Physik: Unterschied zwischen den Versionen

Aus Star Citizen Wiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 99: Zeile 99:


===IFCS===
===IFCS===
[[Datei:IFCSOverview.png]]


In Star Citizen, ist das IFCS das Flugkontrollsystem, welches dafür da ist, den Piloten beim Steuern des Raumschiffs zu helfen. Es übersetzt die Eingaben des Piloten in das Feuern von Thrustern, um das geforderte Kommando umzusetzen, selbst wenn das Antriebssystem beschädigt ist.
In Star Citizen, ist das IFCS das Flugkontrollsystem, welches dafür da ist, den Piloten beim Steuern des Raumschiffs zu helfen. Es übersetzt die Eingaben des Piloten in das Feuern von Thrustern, um das geforderte Kommando umzusetzen, selbst wenn das Antriebssystem beschädigt ist.
Zeile 111: Zeile 115:
Das IFCS besteht aus vielen Subsystemen, die zusammen arbeiten, um den Piloten Stabilität und Kontrolle über das Raumschiff zu bieten. Das System besteht aus:
Das IFCS besteht aus vielen Subsystemen, die zusammen arbeiten, um den Piloten Stabilität und Kontrolle über das Raumschiff zu bieten. Das System besteht aus:


[[Datei:IFCSOverview.png]]


'''Propulsion and Attitude Control (PAC)''' – PAC beinhaltet typischerweise alle Thruster, die für Geradeaus- und Kurvenflug benötigt werden, sowie die zusätzliche Control Moment Gyro (CMG) Einheit, welche weitere Kontrolle über die Fluglage bietet. Zu PAC gehören auch die Schaltkreise und die Kontrollsoftware, welche die Einheiten steuern.
[[Datei:IFCSSubsystems.png]]
 
 
* '''Propulsion and Attitude Control (PAC)''' – PAC beinhaltet typischerweise alle Thruster, die für Geradeaus- und Kurvenflug benötigt werden, sowie die zusätzliche Control Moment Gyro (CMG) Einheit, welche weitere Kontrolle über die Fluglage bietet. Zu PAC gehören auch die Schaltkreise und die Kontrollsoftware, welche die Einheiten steuern.


'''Primary Control System (PCS)''' – Das PCS ist die Schnittstelle zwischen Piloten und IFCS. Es übersetzt die Kommandos des Piloten in Aktionen, die auf virtuelle Kontrollvektoren angewandt werden und so das ideale Zeil darstellen, das der Pilot erreichen möchte. Die virtuellen Kontrollvektoren bestehen aus der Geschwindigkeit entlang jeder Kombination der Achsen, der Zeilrotationsrate um jede Kombination der Achsen, sowie der Referenzfluglage. Diese virtuellen Vektoren repräsentieren den idealen Zustand, den das Schiff unter perfekten Bedingungen erreichen würde. Jede Eingabe des Piloten ist relativ zu diesem virtuellen Vektoren, damit limitiert man den Effekt von externen Fehlern auf die Eingaben des Piloten.
* '''Primary Control System (PCS)''' – Das PCS ist die Schnittstelle zwischen Piloten und IFCS. Es übersetzt die Kommandos des Piloten in Aktionen, die auf virtuelle Kontrollvektoren angewandt werden und so das ideale Zeil darstellen, das der Pilot erreichen möchte. Die virtuellen Kontrollvektoren bestehen aus der Geschwindigkeit entlang jeder Kombination der Achsen, der Zeilrotationsrate um jede Kombination der Achsen, sowie der Referenzfluglage. Diese virtuellen Vektoren repräsentieren den idealen Zustand, den das Schiff unter perfekten Bedingungen erreichen würde. Jede Eingabe des Piloten ist relativ zu diesem virtuellen Vektoren, damit limitiert man den Effekt von externen Fehlern auf die Eingaben des Piloten.


'''Reaction Control System (RCS)''' – Der physische Zustand der virtuellen Vektoren des PCS wird vom erwarteten Thruster und CMG-Ausstoß überwacht, welches auf die Kontrollen des Piloten reagiert. Unter idealen Bedingungen, wird die gewünschte Fluglage des PCS genau mit der aktuellen Fluglage des Schiffes übereinstimmen. Aber Faktoren wie nichtoptimale Thruster oder Ausfälle, externe Einflüsse wie Waffenfeuer, Raketenexplosionen oder ähnliches, können dafür sorgen, dass die reelle Lage des Schiffes von der gewünschten abweicht.
* '''Reaction Control System (RCS)''' – Der physische Zustand der virtuellen Vektoren des PCS wird vom erwarteten Thruster und CMG-Ausstoß überwacht, welches auf die Kontrollen des Piloten reagiert. Unter idealen Bedingungen, wird die gewünschte Fluglage des PCS genau mit der aktuellen Fluglage des Schiffes übereinstimmen. Aber Faktoren wie nichtoptimale Thruster oder Ausfälle, externe Einflüsse wie Waffenfeuer, Raketenexplosionen oder ähnliches, können dafür sorgen, dass die reelle Lage des Schiffes von der gewünschten abweicht.


Wenn das passiert, dann ist es die Aufgabe des RCS den Unterschied auf Null zu bringen. Es versucht  dies über das Nutzen der Thruster und des Control Moment Gyros. Sollte das Synchronisieren der virtuellen und realen Fluglage auch nach einer gewissen Zeit fehlschlagen, dann wird es die virtuellen  Vektoren auf die real erreichten zurücksetzen, damit der Pilot nicht verwirrt wird.
Wenn das passiert, dann ist es die Aufgabe des RCS den Unterschied auf Null zu bringen. Es versucht  dies über das Nutzen der Thruster und des Control Moment Gyros. Sollte das Synchronisieren der virtuellen und realen Fluglage auch nach einer gewissen Zeit fehlschlagen, dann wird es die virtuellen  Vektoren auf die real erreichten zurücksetzen, damit der Pilot nicht verwirrt wird.


'''Anti-gravity System (AGS)''' – Das AGS erkennt und kompensiert Gravitation, sowie andere externe Kräfte, damit das Raumschiff in seiner Position relativ zur Quelle des Feldes verbleibt.
* '''Anti-gravity System (AGS)''' – Das AGS erkennt und kompensiert Gravitation, sowie andere externe Kräfte, damit das Raumschiff in seiner Position relativ zur Quelle des Feldes verbleibt.


'''Turn Control System (TCS)''' – Das TCS assistiert den Piloten dabei stabile Kurven zu fliegen. Bei höheren Geschwindigkeiten können die Thruster eines Raumschiffes womöglich nicht genug Schub erzeugen, um eine stabile Kurve zu fliegen. Dann beginnt das Schiff zu sliden, was oft in einer Kollision endet. Ein Pilot wird normalerweise die Geschwindigkeit herabsetzen, wenn er eine Kurve fliegt. Das TCS kann aber das Gaspedal automatisch regeln und so die Vorwärtsgeschwindigkeit so anpassen, dass es zum Level des Kurvenschubs passt. Das System nimmt auch die optimale Einstellung zum Rollen mit in die Berechnung auf, um die richtige Kurvengeschwindigkeit zu berechnen.
* '''Turn Control System (TCS)''' – Das TCS assistiert den Piloten dabei stabile Kurven zu fliegen. Bei höheren Geschwindigkeiten können die Thruster eines Raumschiffes womöglich nicht genug Schub erzeugen, um eine stabile Kurve zu fliegen. Dann beginnt das Schiff zu sliden, was oft in einer Kollision endet. Ein Pilot wird normalerweise die Geschwindigkeit herabsetzen, wenn er eine Kurve fliegt. Das TCS kann aber das Gaspedal automatisch regeln und so die Vorwärtsgeschwindigkeit so anpassen, dass es zum Level des Kurvenschubs passt. Das System nimmt auch die optimale Einstellung zum Rollen mit in die Berechnung auf, um die richtige Kurvengeschwindigkeit zu berechnen.


'''G-force Control Mode (GCM''') – Der GCM ist ein Sicherheitsmodus, welches versucht die Auswirkung von potentiell schädlichen Level von G-Kräften auf den Piloten zu vermeiden. Der primäre Fokus ist es, dass der vollständig fixierte Pilot nicht zu lange gefährlichen vertikalen G-Kräften ausgesetzt ist, da diese zu Blackout, Greyout, Redout, Desorientierung, Verlust des Bewusstseins und, wenn nicht vermindert, zum Tod führen.
* '''G-force Control Mode (GCM''') – Der GCM ist ein Sicherheitsmodus, welches versucht die Auswirkung von potentiell schädlichen Level von G-Kräften auf den Piloten zu vermeiden. Der primäre Fokus ist es, dass der vollständig fixierte Pilot nicht zu lange gefährlichen vertikalen G-Kräften ausgesetzt ist, da diese zu Blackout, Greyout, Redout, Desorientierung, Verlust des Bewusstseins und, wenn nicht vermindert, zum Tod führen.


Horizontale G-Kräfte extremer Stärke werden auch vermieden, da auch sie dem Piloten physische Schäden zuführen können, aber auch strukturelle Schäden am Raumschiff verursachen.
Horizontale G-Kräfte extremer Stärke werden auch vermieden, da auch sie dem Piloten physische Schäden zuführen können, aber auch strukturelle Schäden am Raumschiff verursachen.
Zeile 151: Zeile 157:
Weil sich das IFCS nicht auf dem Antriebssystem verlassen kann, dass die angeforderte Bewegung ausgeführt wird, benutzt es PID-Feedback-Controller, um den Fehler zwischen dem gewünschten und gemessenen Zustand zu minimieren. Solche Controller werden auch im PCS zum Berechnen der optimalen Kraft und des Drehmoments genutzt, sowie im RCS, um die Fluglage zu stabilisieren.
Weil sich das IFCS nicht auf dem Antriebssystem verlassen kann, dass die angeforderte Bewegung ausgeführt wird, benutzt es PID-Feedback-Controller, um den Fehler zwischen dem gewünschten und gemessenen Zustand zu minimieren. Solche Controller werden auch im PCS zum Berechnen der optimalen Kraft und des Drehmoments genutzt, sowie im RCS, um die Fluglage zu stabilisieren.


{{img}}
[[Datei:IFCSPIDOutput.png]]


PID-Controller können für eine Menge an verschiedener Charakteristiken konfiguriert werden. Bei der Geschwindigkeitskontrolle zum Beispiel wird ein übersteuernder Controller sehr schnell auf die Referenzgeschwindigkeit beschleunigen und sogar darüber hinaus gehen, um sich dann oszillierend auf die Endgeschwindigkeit einzustellen (siehe blaue Linie im oberen Bild).
PID-Controller können für eine Menge an verschiedener Charakteristiken konfiguriert werden. Bei der Geschwindigkeitskontrolle zum Beispiel wird ein übersteuernder Controller sehr schnell auf die Referenzgeschwindigkeit beschleunigen und sogar darüber hinaus gehen, um sich dann oszillierend auf die Endgeschwindigkeit einzustellen (siehe blaue Linie im oberen Bild).
Zeile 169: Zeile 175:
Unter idealen Voraussetzungen sind die Thruster um den gedachten Massenschwerpunkt des Schiffes herum ausbalanciert angebracht. Damit kann das Schiff die Thruster optimal kontrollieren. In diesem einfachen Bild sind die oberen, hinteren Thruster um den Massenschwerpunkt herum ausbalanciert angebracht, so dass sie in Summe null Drehmoment um die Z-Achse erzeugen.
Unter idealen Voraussetzungen sind die Thruster um den gedachten Massenschwerpunkt des Schiffes herum ausbalanciert angebracht. Damit kann das Schiff die Thruster optimal kontrollieren. In diesem einfachen Bild sind die oberen, hinteren Thruster um den Massenschwerpunkt herum ausbalanciert angebracht, so dass sie in Summe null Drehmoment um die Z-Achse erzeugen.


{{img}}
[[Datei:HornetDiagram.png]]


Bei erlittenem Schaden, verändert sich der Massenschwerpunkt und destabilisiert das Thruster-System. Im folgenden Bild sind die Thruster nicht mehr um den Massenschwerpunkt herum balanciert. Wenn also die Thruster gezündet werden, wird das Schiff einem Drehmoment ausgesetzt, welches zu ungewollten Gieren führen würde.
Bei erlittenem Schaden, verändert sich der Massenschwerpunkt und destabilisiert das Thruster-System. Im folgenden Bild sind die Thruster nicht mehr um den Massenschwerpunkt herum balanciert. Wenn also die Thruster gezündet werden, wird das Schiff einem Drehmoment ausgesetzt, welches zu ungewollten Gieren führen würde.
Zeile 175: Zeile 181:
Das IFCS wird versuchen dieses Drehmoment auszugleichen, indem andere Thruster genutzt werden, um eine Gegenkraft auszuwirken. Wenn das nicht möglich ist, dann wird versucht den Fehler durch die Verringerung der Schubleistung der Thruster herbeizuführen.
Das IFCS wird versuchen dieses Drehmoment auszugleichen, indem andere Thruster genutzt werden, um eine Gegenkraft auszuwirken. Wenn das nicht möglich ist, dann wird versucht den Fehler durch die Verringerung der Schubleistung der Thruster herbeizuführen.


{{img}}
[[Datei:HornetDiagram2.png]]


Schaden und andere Bedingungen können ebenso die Kapazität der Thruster, die Reaktionszeit oder die Zielgenauigkeit beeinträchtigen. Ein Thruster kann auch komplett ausfallen. Jede dieser Änderungen hat eine Auswirkung auf die Balance der Thruster und deshalb auch auf das Verhalten des Schiffes unter der Kontrolle des Piloten.
Schaden und andere Bedingungen können ebenso die Kapazität der Thruster, die Reaktionszeit oder die Zielgenauigkeit beeinträchtigen. Ein Thruster kann auch komplett ausfallen. Jede dieser Änderungen hat eine Auswirkung auf die Balance der Thruster und deshalb auch auf das Verhalten des Schiffes unter der Kontrolle des Piloten.

Version vom 29. Juni 2014, 09:59 Uhr